GN: A Modern Build
System For BSD ?

https://gn.googlesource.com/gn

Bucharest, Septembre 23rd 2018

Benjamin Jacobs

(Original) Motivation
e As an easy way to import LLVM into
DragonFlyBSD base

e Under a (naive) assumption, given that:

o Upsream LLVM uses CMake which
generates Ninja files

o GN generates Ninja files

o ~-> With little effort it could be possible
to merge both (?)

What is GN ?

e Developped at Google to replace Gypp

e Used to build the chromium browser and the
chrome OS since 2016

e Generates Ninja files

e Can also generate VS and XCode projects
e Used to live inside the chromium repository
e C++ code base

e Uses 200+ C++ file from base and platform
support libraries of chromium + libevent

e 3.8MB all statically linked
e 3-Clause BSD License

(And Ninja?)

o «ltis designed to have its input files
generated by a higher-level build system, and
it is designed to run builds as fast as
possible.» (https://ninja-build.org/)

o Computes the dependency graph and
executes the commands used to update
iInexisting or outdated target

e Also updates a target when the command
has been changed, e.g. modifying CFLAGS.

o Some well known generators: CMake,
meson.

e Apache License 2.0

What Could Be a
Modern Build
System?

Performant®

Correct

Easy to use and still powerful enough

But more importantly, hard to misuse

Extensible ?

*. See http://gittup.org/tup/ Mike Shal's paper
(2009)

For BSD?

e Open source license

e Community support

e Portable C/C++ codebase

o Better cross-compilation support

e Your answer at the end?

GN's Language

gn help grammar
Simple C-like syntax

Booleans, integers, strings and (nestable)
lists variables

Primitive expressions: value substitution, list
concatenation, logical, ...

Primitive control structures: foreach
(1terator, list) {...}and1if

(expr) {...}

Limited path substitution functions, e.g. to
construct path relative to the build directory

Script can be run at the evaluation/generation
stage whose output can be used by GN itself.

Note: The language is evaluated, however
the separation imposed between the
generation phase and the
compilation/building phase makes it "mostly
declarative”.

GN's Language
(continued)

e Higher-level elements:
o targets
o configurations

o args: build knobs (versus
/etc/default/make.conf)

o toolchains
o template: macro-like construction, e.g.

e Hygenic and strict variable propagation and
scoping rules

e Import (versus make's #include)

Only a Handful of
Target Declaration
Types

 Builtin types: It is not possible to define
arbitrary rules like Make's wildcard rules
(sys.mk)!

e Strictly tailored towards the C language:
o executable
o Loadable module
o shared library
o static library

o source set: like a static library without
the intermediary linking step, to be used
as dependency

e« A toolchain provides the actual command
to be run

e The action/action foreach targets can
call out to an external command. This is
mostly used to replace inline sh/sed/awk
rules generating files.

More Targets

e action/action foreach: run an external
script

e macOS specifics
e file copy

e group: meta target

Toolchain Definition

e gn help toolchain/gn help tool

o Compiling tools: "cc", "cxx",

"rC", "asm"

objc", "objcxx”,

e Linking tools: "alink”, "solink", "link"

e There must be a single "default" toolchain
defined but a target can be build using
another one

e When it is the case, all the dependency graph
will be duplicated using the other toolchain

e GN determines the compiler to be used by
looking at the file extension (hardcoded)

e Causes an issue with .c files which really
need to be compiled in C++ mode, e.q.
binutils's gold.

Target configuration elements

e Hold include directories, defines, compiler *flags, an inputs
dependencies.

o Can be specified on the target element or can be named and
referenced by targets using configs, public configs or
all dependent configs.

config ("xxx config") {
includes = [".", "//contrib/xxx/include"]
defines = ["HAVE FOO"]
}
target ("executable") { ... configs = [":xxx config"]

o Config are merged together: include directories, cflags

e public configsorall dependent configs also apply to
direct dependent, or transitively to all dependent's dependents.

e Help avoiding the proliferation of those unnecessary or redundant -
l../../path/ and -Ddefines

e GN Goodie: header check mode: search for C #include "file",
where the include search directory wouldn't have been provided
explicitely or implicitely by transitive dependencies.

}

Args, and Special
Variables or
Functions

e target gen dir, target out dir,
get target outputs().
rebase path()

e Whose values vary with the current toolchain

GN file locations,
labels and references

o Label are use to reference target,
dependencies, or config.

e 3 kind of reference:
/absolute/target:name,
relative/target:name and //root-
of-sources/relative/target:name
references.

e Looks for a name target defined in the
target/BUILD.gn file.

o Alternate hierachy is possible, to avoid
cluttering the tree with BUILD.gn files.

Optimistic
demonstration

Final Words and
Feedback

e Itis all about lowering the burden of
maintaining build scripts.

e What is your experience ?

