Using Boot
Environments at

Scale

Allan Jude — allanjude@freebsd.org
Klara Systems

mailto:allanjude@freebsd.org

Introduction

FreeBSD Server Admin since 2001

4 Years as FreeBSD committer

o ZFS, installer, boot loader, GELI (FDE)
FreeBSD Core Team (2016 - Present)
Co-Author of “FreeBSD Mastery: ZFS" and

“FreeBSD Mastery: Advanced ZFS” with Michael
W. Lucas — ZFESBook.com

Host of BSDNow.tv Podcast

GSoC Mentor for bectl(8)

http://www.zfsbook.com

What is a Boot Environment (BE)

e Similar in concept to NanoBSD

O

O
O
O

Divides the disk into 2 partitions (firmware images)
Install the stock image to both

At upgrade time, overwrite the inactive image
Boot-once to the newer image. If it fails, or is
otherwise unserviceable, reboot to good image

If the new image is accepted, configure it as the
default for all future reboots

Repeat process for next upgrade

ZFS Boot Environments

ZFS takes this concept further

ZFS allows you to have many filesystems,
without needing to partition your disk
Separate the OS (root FS) from user data

(home directories, logs, databases)
ZFS has instant snapshots and clones
Snapshot and clone the root filesystem
before you make changes or upgrade

Now you have multiple different ‘versions’ of
your root filesystem to choose from
Modern FreeBSD boot loader allows you to

choose from different rootfs at boot

Now you can ‘revert’ an upgrade without
losing changes to home directories, logs,
databases or other filesystems, further
separating the ‘OS’ from the ‘Data’

Control

The flexibility of ZFS puts you in control
Any files in the filesystem mounted as / are
treated as part of the operating system
Any files in other filesystems, are retained,

no matter what ‘version’ of the OS you boot
Packages (/usr/local) and the pkg database
(/var/db/pkg) are included in /. This allows
you to ‘'undo’ a pkg upgrade

Default BE layout

NAME

zroot

zroot/ROOT
zroot/ROOT/default
zroot/tmp
zroot/usr
zroot/usr/obj

zroot/usr/home
zroot/var
zroot/var/audit
zroot/var/crash
zroot/var/log
zroot/var/mail
zroot/var/tmp

REFER MOUNTPOINT
88K /zroot
88K none

1.67G /
88K /tmp
88K /usr
8.03G /usr/obj
140M /usr/home
88K /var
88K /var/audit
152M /var/crash
352K /var/log
132K /var/mail
88K /var/tmp

That’s Great,

But | Already
Knew That

Going Further

When upgrading a system, we wanted to
replace the entire OS with a newer version
So we just install a new boot environment
But what about /etc? My machine needs to

have a configured network for puppet to
replace the rest of the configuration
Let’'s make /etc its own filesystem, it can
persist through the upgrade this way

What Could Possibly

Go Wrong?

Not So Fast...

A lot of boot things depend upon /etc

No /etc/fstab, no /etc/rc, no /etc/ttys

Don’t want to etcupdate or mergemaster
Another Idea: Steal from NanoBSD: A

read-only /etc recreated at boot from /cfg
Then learned about init_script See'cader®)
Use init_script to mount/cfg. Replace
persistent files in /etc with symlinks to /cfg

What do you run from init_script?

mount -p | while read _dev _mp _type _rest;
do

[S_mp = "/"] || continue
if [S_type = "zfs"] ; then
pool=${_dev%%/*}

zfs mount ${pool}/cfg

So how does that work?

/cfg populated with ~10 files we care about

Configure network (rc.conf.”), sysctls, SSHd
keys, fstab (for jails), etc

Rest of /etc can be replaced with stock files

Never have to merge /etc/rc.d files
Originally had to manually recreate symlinks
because our BE images were stock

Used a VM and a script to make new BEs

How do you deploy a Boot Env?

1. Create an image:

a. zfs snapshot zroot/ROOT/bename@snapname
b. zfs send -pec zroot/ROOT/bename
@snapname | xz -TO -9 > bename.zfs.xz

2. Apply the image:

a. fetch -o - https://svr/bename.zfs.xz
| unxz | zfs recv zroot/ROOT/newbe

3. Boot Once:
a. zfsbootcfg zfs:zroot/ROOT/newbe:

Shortcomings

We were still doing pkg upgrade -fina
chroot for the base system BE plus each jall
Building images was painfully manual
Missing a step or file almost every time

Bootstrapping a fresh install was still a
bunch of manual work, over slow IPMI

Not usable by anyone else, too many rough
edges and sharp corners

Using BEs at Scale

Over 100 servers, 38 DCs, 11 countries
Only myself and 1 full time sysadmin
Mix of versions, 10.4, 11.1, 12-CURREN

freebsd-update upgrade too manua

zfs recv; zfsbootcfg; reboot ta
less than a minute, and fails gracefully

Upgrade remote machines with confidence
even without console access

KES

Not Just For Packages Anymore

e Poudriere is the tool used to build the official
FreeBSD binary packages, very quickly
Uses Jails, and optionally ZFS and TMPFS
Starts 1 jail per core, builds one package in each

jail, only dependencies installed, no network
You can use it to build your own customized

package (ports tree * freebsd version * arch * set)
Supports: iso, iso+(z)mfs, usb, usb+(z)mfs,
rawdisk, zfsrawdisk, tar, firmware, embedded

A Better Way to Build

e During the development of this upgrade
procedure, | happened to be talking with
Baptiste Daroussin (bapt@) who informed me
of his work on poudriere image

Designed to create customized VM or USB
images. Used at Gandi to build FreeBSD
images for their Public Cloud Customers

e Supports overlays and preinstalled packages

Poudriere Image ZFS BE Support

After discussing it, we decided that zfs
send should be added as an output format
Add -t zfssend (full pool replication
stream) and -t zfssend+be (just the BE)

Modified overlay support to handle symlinks
Added support for a ‘'ZFS Layout’ config file,
In the same format used by bsdinstall
Control what files are part of the Boot Env.

What About Brand New Systems?

Previously, we used IPMI Remote Media
feature to run bootonly.iso on each machine
and manually ran through bsdinstall
No PXEBOQOT with only 1-3 servers per DC

Now we make our own iso+mfs image
Prompts for some config details (no DHCP)
Partition disks and create an empty pool
Then zfs recv a full pool image on to it

Poudriere Image for Everyone

Many recent enhancements upstreamed
Work-in-Progress can be found on my github
Use it to create your own custom images
Builds from poudriere jails you have already

created to build packages. Can create from
releases without having to compile!

New Image Formats? vmdk, qcow2, vhd, MBR
(CSM & EFI), GPT (CSM, EFI, both), <yours>

Enhancing Poudriere Image

Needs better naming for image types
Should support many more combinations
Replace tools/boot/rootgen.sh

Should integrate various ‘Cloudware’
Replicate features of ‘release’ building bits
Support for post-build scripts (chroot)

More appliance building features - talk to me
What features do you need?

Improvements to Come

e Automate the process of confirming an image is
good, some combination of:
o Uptime, Minimum level of served, self-tests

e Use bectl or Libbe to set the shiney new boot
environment as the default for future boots

e Extend zfsbootcfg
o Currently just a string

o Delphix uses failure count down. If counter reaches
zero, boots into a phone-home rescue mode
o Use a structured format to support both and more

Nested Boot Environments

e The stretch goal of the bectl(8) project was to
add support for ‘nested’ BEs (bdrewery style)

e Example: have a /usr/src that matches the
running kernel/world in each boot environment

e \Would like better support for recursive cloning
(ZFS Channel Program would be great for this)

e \What filesystems would you like separate from
the root FS, but part of the boot environment?

What Are Your

Questions?

BSDNow.tv

e \Weekly video podcast about the latest news in the
BSD and [lumOS world
e Always looking for developers to interview

e Our archives are full of goodies (100+ Interviews):
o Matt Ahrens Kirk McKusick

George Wilson Josh Paetzel

Bryan Cantrill Justin Gibbs

Adam Leventhal Pawet Jakub Dawidek
Richard Yao Sean Chittenden

Alex Reese Ryan Zezeski

